

Hygienic Design for Manufacturing Facilities & Equipment

Agenda

- + Hygienic Design for Facilities
- + Hygienic Design for Equipment
- + 3rd Party Industry Standards

121/2025

What is Hygienic (Sanitary) Design?

Design techniques applied to buildings, equipment, and processes to enhance cleanability to a microbiological level and help mitigate food safety risks.

Easy to clean, controls pathogens, & allows for less downtime for cleaning.

Hygienic Designs Are Directly Related to Regulations

21 CFR Part 117 cGMP Categories

- Personnel
- Plant and grounds
- Sanitary operations
- Sanitary facilities and controls
- Equipment and utensils
- Processes and controls
- Warehousing and distribution

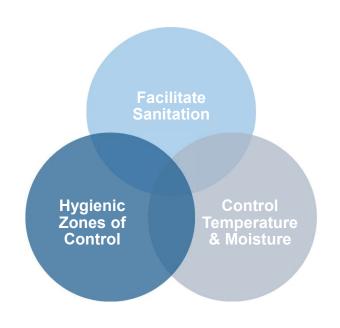
- + Equipment/ utility characteristics
- + Environmental characteristics

3 Themes of Sanitary Facility Design

Hygienic Zones of Control:

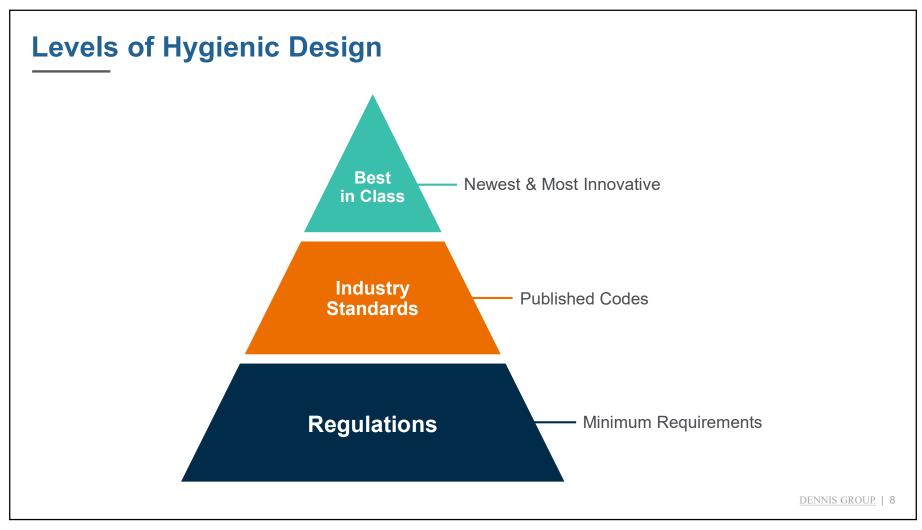
+ In order to eliminate cross contamination, define areas with different sanitary needs delineated by physical separations.

Control Temperature and Moisture:


+ By controlling water accumulation, room temperature and humidity, and air flow and quality, to prevent the survival, harborage, growth, and of microorganisms.

Facilitate Sanitation:

+ The facility should be easily cleanable to a microbiological level.


Sanitary Design Principles

North American Meat Institutes Sanitary Design Principles

- 1. Define Distinct Hygienic Zones
- 2. Control Flow of Materials & Personnel
- 3. Control Water Accumulation
- 4. Control Temperature & Humidity
- 5. Control Air Flow & Quality
- 6. Site Elements Facilitate Sanitation
- 7. Building Envelope Facilitates Sanitary Conditions
- 8. Interior Spatial Design Facilitates Sanitation
- 9. Building Components & Construction Facilitate Sanitation
- 10. Design Utility Systems To Prevent Contamination
- 11. Sanitation Integrated Into Facility Design

Sanitary Design Principles

- 1. Define Distinct Hygienic Zones
- 2. Control Flow of Materials & Personnel
- 3. Control Water Accumulation
- 4. Control Temperature & Humidity
- 5. Control Air Flow & Quality
- 6. Site Elements Facilitate Sanitation
- 7. Building Envelope Facilitates Sanitary
- 8 Interior Spatial Design Facilitates Sanitation
- 9. Building Components & Construction Facilitate Sanitation
- 10. Design Utility Systems To Prevent
- 11. Sanitation Integrated Into Facility Design

Hygienic Zones of Control

Hygienic Zoning

Why is hygienic zoning important for facility design?

- + Defines a space based on product risk
- + Sets the baseline for sanitary design within each space
- + Dictates the materials of construction within a space
- + Assists with control of food safety hazards by controlling & maintaining hygienic zones
 - + Easy to clean designs reduction of threaded, nut/bolt connections
 - + Stops the spread of pathogens from area to area
 - + Reduces allergen cross contact
 - + Limits the opportunity for cross contamination
 - + Materials selected to last and reduce harborage zones

Hygienic Zone Classifications

Hygienic Zoning – the classification of rooms within a facility based on the food safety risk to the product

GMP High Care

Any area with exposed ready to eat finished product.

GMP Medium Care

Production spaces located before a kill step.

GMP Standard Care

Areas in which raw materials and product is not exposed to the environment or foreign contaminates

Non-GMP/Utility

Areas where no food production, packaging, or storage is occurring

Wet Clean Vs. Dry Clean

Maintaining Hygienic Zones

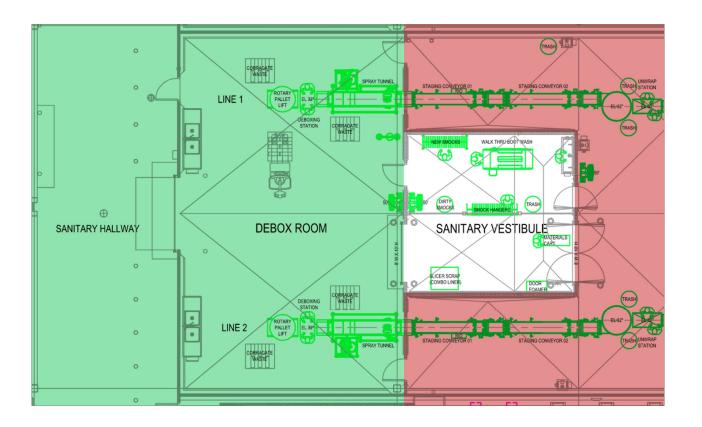
How does the facility maintain hygienic zones?

- + Reduce crossovers within the facility layout
- + Reduce traffic traveling through different hygienic zones
- + Separate raw and RTE
- + Separate unique allergens
- + Manageable path of travel

Flows to Consider

Material Flows	Personnel Flows	Alternate Flows For Construction
 + Raw ingredients, product, waste + RTE product + Allergens + Rework + Primary Packaging + Secondary/Tertiary Packaging + Waste 	 + High Care personnel + Medium & Standard Care personnel + Management, QA, & Maintenance 	+ Contractors + Materials for construction + Waste

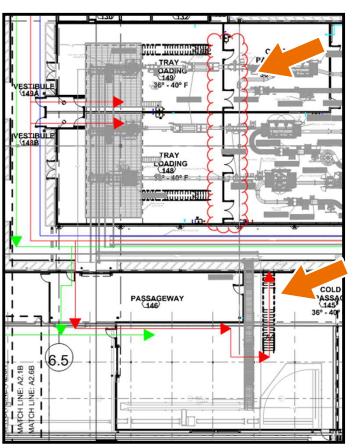
Reduce Traffic Traveling Through Different Hygienic Zones



Sanitary vestibules or transition zones:

- + Reduce environmental pathogens entering high care
- + Controls floor conditions
 - + Foot traffic
 - + Wheel traffic
- + Promotes good employee hygiene
 - + Handwashing
 - + Gowning
 - + Gloves

Reduce Traffic Traveling Through Different Hygienic Zones



Reduce Traffic Traveling Through Different Hygienic Zones

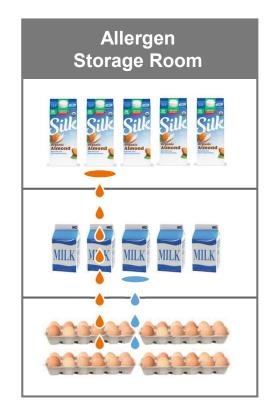
SANITARY
VESTIBULES CAN
• BE BYPASSED

KEY - PERSONNEL
PRIMARY PACKAGING
SECONDARY PACKAGING
SHIPPING AND STORAGE
GREENHOUSE
MAINTENANCE AND MECH
GMP EXIT

Separate Unique Allergens

Storage

Handling


Processing

Allergens in Storage

What's wrong with this design?

Damage to almond milk may contaminate both milk & eggs


Damage to milk may contaminate the eggs

Allergens in Product Handling

Secondary Ingredient Handling

- + Where do the allergens go after the warehouse?
 - + Supersack/ Bulk bag unloading stations
 - + 50lb bag unloading stations
 - + Drum pumps
 - + Secondary totes and buckets
 - + Directly to production lines
- + How to control?
 - + Employee practices
 - + Separation or separate equipment
 - + Color coding of scoops and containers
 - + Portable or permanent dust collection systems

Allergens in Processing

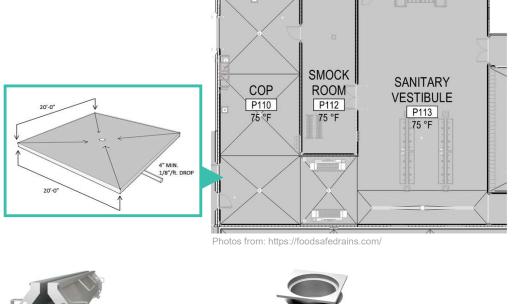
Equipment, Conveyance, Rework, & Waste

- + What is the allergen profile of the production line?
 - + Shared equipment?
 - + Cleanability?
- + Are there walls between production lines?
 - + For dusty processes or cleaning during production, this may be required.
- + What is the path of travel?
 - + Conveyance
 - + Rework
 - + Waste
- + Is there adequate storage?

Sanitary Design Principles

- 1. Define Distinct Hygienic Zones
- 2. Control Flow of Materials & Personne
- 3 Control Water Accumulation
- 4. Control Temperature & Humidity
- 5. Control Air Flow & Quality
- 6. Site Elements Facilitate Sanitation
- 7. Building Envelope Facilitates Sanitary
- 8 Interior Spatial Design Facilitates Sanitation
- 9. Building Components & Construction Facilitate Sanitation
- 10. Design Utility Systems To Prevent
- Sanitation Integrated Into Facility Design

Control Temperature & Moisture


Why Control Temperature & Moisture? Water **Bacteria** & Optimal **Temperature** DENNIS GROUP | 22

Designs to Reduce Water Accumulation

Flooring Features – Drain Design

- + Floor is sloped to drain
- + Equipment discharges are piped to drains with air gap
- + Cleanable
- + Suitable size for space
- + Process waste lines are not connected to our sanitary waste lines

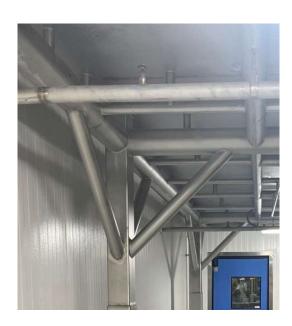
Drain Considerations

Do you see clogged piping?

Can it be accessed for cleaning?

Designs to Reduce Water Accumulation

Flooring Features



Designs to Reduce Water Accumulation

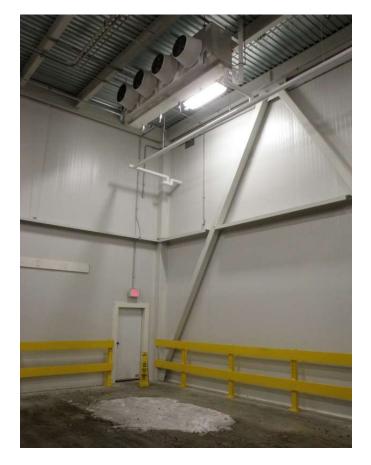
Reducing Flat Surfaces


Condensation Control

Condensation Control

Beware of frost

- + Freezing inhibits growth of bacterial or viral pathogens
- + Improper process
- + Poorly constructed or not maintained



Condensation & HVAC

Several factors affecting air handling units:

- + Lack of preventative maintenance
- + Doors being left open
- + HVAC not designed for space

Air Quality Considerations

Ways to spot check air quality during an inspection

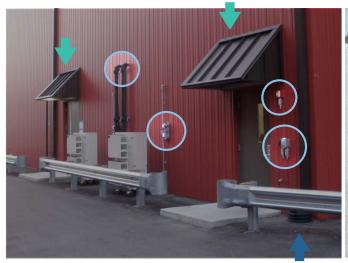
- + HVAC, Blower, Pneumatic, & Dehumidification systems
 - + What is their preventive maintenance schedule for air filter changing and ask for the work orders showing the last 3 times they have been changed.
 - + Look for signs of mold, mildew, or dust on the units
 - + Air testing results
 - + Mold complaints
- + Where is air or steam introduced to the process?
 - + Culinary steam (3A SSI standard)
 - + Are sterile air filters at point of use? Ask for the work orders showing the last 3 times they have been changed.
 - + Are air guns being used for cleaning?
 - + Are there any compressed air or gas leaks?
 - + Air testing at source and point of use

Sanitary Design Principles

- 1. Define Distinct Hygienic Zones
- 2. Control Flow of Materials & Personnel
- 3. Control Water Accumulation
- 4. Control Temperature & Humidity
- 5. Control Air Flow & Quality
- 6. Site Elements Facilitate Sanitation
- 7. Building Envelope Facilitates Sanitary Conditions
- 8. Interior Spatial Design Facilitates Sanitation
- 9. Building Components & Construction Facilitate Sanitation
- 10. Design Utility Systems To Prevent
 Contamination
- 11. Sanitation Integrated Into Facility Design

Facilitate Sanitation

Building Envelope Facilitates Sanitary Conditions


Exterior Elements

- + Design and build all openings in the building envelope (doors, fans, louvers, and utility penetrations) so that insects and rodents have no harborage around the building perimeter, easy route into the facility, or harborage inside the building.
- + Design and build building envelope components to enable easy cleaning and inspection.

Entrance canopies sloped to prevent nesting & water accumulation

Roof sloped and drained off exterior of building

All voids were filled & sealed to prevent water damage and pest entry

Interior Spatial Design Promotes Sanitation

Spatial Design

FDA 21 CFR 117.20 Plant and Grounds

"...aisles or working spaces are provided between equipment and walls and are adequately unobstructed and of adequate width to permit employees to perform their duties and to protect against contaminating food, food-contact surfaces, or food-packaging materials with clothing or personal contact."

Building Materials

Common Materials Found in Food Production Areas

Building Components	Preferred Materials
Flooring	MRF, Vitreous Tile, Dairy Brick, Sealed Concrete, Epoxy Coated
Walls	IMP, Vitreous Tile, Precast Concrete, CMU
Ceiling	IMP, Prefabricated concrete, Drop ceilings
Doors	Solid metal or plastic (not hollow), No wood, No Glass
Light Fixtures	Shatter resistant bulbs, flushed mounted preferred
Interior Windows	Lexan panels flush mounted or pitched sill



What options are available for food manufacturers to use in their infrastructure?

Options for Hangers/Attachments

How do we support and hang pipes?

Options for Penetrations

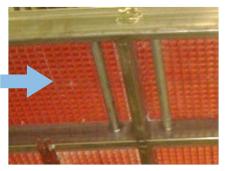
How do I cut through the walls and ceilings?

Options for Barriers

Painted metals vs. stainless steel

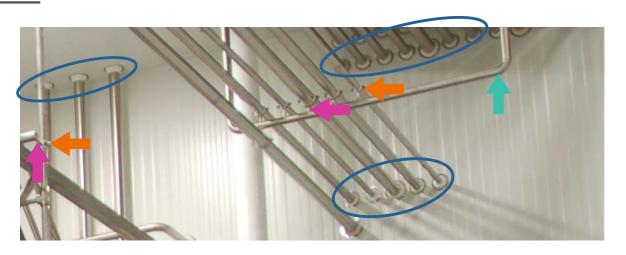
1212025

Options for Working Platforms


- + Use materials suitable for wash-down
- + Avoid debris collection
- + Slope horizontal surfaces whenever possible
- + Use solid decking above open product and slope to drain

Grating supported by pipe can drain better and prevent microbiological growth

Handrails continuously welded & ground smooth. Kick plates welded to handrails above deck.



Is Construction Suitable for the Hygienic Zone?

STAINLESS STEEL
HSS/PIPE
SMOOTH ROD
PIPETITE
HEX

	HYGIENIC ZONE DESIGNATION						
MATERIALS OF CONSTRUCTION	GMP HIGH CARE DRY	GMP HIGH CARE WET	GMP MEDIUM CARE DRY	GMP MEDIUM CARE WET	GMP STANDARD CARE DRY	GMP STANDARD CARE WET	NON-GMP/ UTILITY
ACCEPTED SUPPORT MATERIAL:	GALVANIZED STEEL	STAINLESS STEEL	GALVANIZED STEEL	STAINLESS STEEL	PRIMED CARBON STEEL	STAINLESS STEEL	PRIMED CARBON STEEL
TRAPEZE TYPE:	HSS / PIPE	HSS / PIPE	ANGLE	ANGLE	ANGLE	ANGLE	STRUT
SUPPORT RODS:	SMOOTH ROD	SMOOTH ROD	SMOOTH ROD	SMOOTH ROD	SMOOTH or ALL-THREAD	SMOOTH or ALL-THREAD	ALL-THREAD ROD
PENETRATION TYPE:	PIPETITE	PIPETITE	ESCUTCHEON PLATE	ESCUTCHEON PLATE	ESCUTCHEON PLATE	ESCUTCHEON PLATE	
CLAMPS:	HEX	HEX	HEX	HEX	TRADE SPECIFIC	TRADE SPECIFIC	TRADE SPECIFIC
SPECIALIZED COMMENTS:							

Summary

North American Meat Institutes Sanitary Design Principles

- 1. Define Distinct Hygienic Zones
- 2. Control Flow of Materials & Personnel
- 3. Control Water Accumulation
- 4. Control Temperature & Humidity
- 5. Control Air Flow & Quality
- 6. Site Elements Facilitate Sanitation
- 7. Building Envelope Facilitates Sanitary Conditions
- 8. Interior Spatial Design Facilitates Sanitation
- 9. Building Components & Construction Facilitate Sanitation
- 10. Design Utility Systems To Prevent Contamination
- 11. Sanitation Integrated Into Facility Design

Steps for Reviewing Equipment

- 1 Define Product Contact & Non-Product Contact Surfaces
- 2 Determine Cleaning Methods
- 3 Determine Approved Materials of Construction
- 4 Evaluate for Food Safety Hazards

1. Determine Product Contact & Non-Product Contact Surfaces

Product Contact Surfaces

- + Most controlled area is where the product can touch
- + Consider all angles
- + Must meet regulatory requirements for these surfaces.

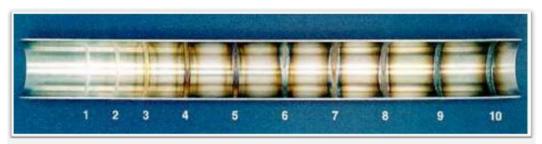
Non-Product Contact Surfaces

- + Includes all remaining parts of the equipment
- + The closer to product contact, the higher the sanitary requirements

2. Determine Cleaning Methods

How will the equipment be cleaned? What chemicals will be used? How easy is it to clean after install?

Cleaning Methods	Made to be Cleanable	Installed to be Cleanable
+ CIP System	+ Accessibility	+ Access
+ COP Sink	+ Spacers	+ Clearances
+ Dry Clean	+ Disassembly requirements	
+ Wet Clean	+ Cleaning Time	
+ Manual Clean	+ Niches	
+ Tunnel Washer	+ Reassembly	


- +Choose materials based on operational environment and intended use.
- + Materials must maintain its characteristics during the life of the equipment and not become a source of contamination.
- +Food contact surfaces & equipment must meet regulatory requirements.

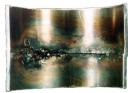
Smooth	Impervious	Free of cracks and crevices	
Nonporous	Nonabsorbent	Non- contaminating	
Nonreactive	Corrosion resistant	Durable	
Maintenance free	Nontoxic	Cleanable	

Metals	Applications
Stainless Steel	Preferred metal for food contact surfaces because of its corrosion resistance and durability.
Cast Iron	Occasionally used for frying and cooking surfaces
Aluminum	Baking trays, cooking surfaces
Copper, Brass, & Bronze	Primarily used in brewing and piping for air/water in non-wash areas.
Titanium	Used in highly corrosive environments, high acid products, or high salt products (tomato processing)
Carbon Steel	Never use as a food contact surface
Galvanized Steel	Never use as a food contact surface

All welds should be ground & polished to a minimum #4 finish.

From the AWS D18.1/D18.2 standards for austenitic stainless steel piping in food & dairy

A series of orbital welds on the ID of a 316L stainless steel tube

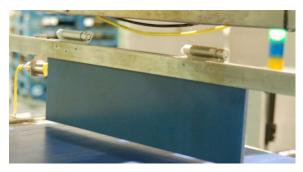

These welds were purged on the ID with argon gas containing oxygen as a contaminant ranging in concentrations from 10 ppm (sample 1) to 25,000 ppm (sample 10).

Sample numbers greater than four have typically been considered unacceptable.

NOT ACCEPTABLE

This weld is "sugared"

Manual weld taken from an operating plant. This weld has defects which include lack of penetration, misalignment, a huge crevice, and discoloration due to poor ID purge.


ACCEPTABLE

for food, dairy, & beverage

An orbital weld on 316L electropolished stainless steel. The weld is fully penetrated with a uniform crevice-free inner weld bead with good alignment. The ID was purged with argon containing 8 ppm of oxygen which resulted in slight discoloration.

Non-Metals	Applications
Plastics (Nylon, UHMW, Polyethlyene)	Gaskets, seals, scrapers, tools, conveyor belts *Food Grade formulas only*
Ceramics	Membrane filtration
Glass	Inspection windows, dial covers, optical sensors *Always use plastic options first*
Rubbers/Elastomers (Nitrile, Silicone, EPDM)	Gaskets, seals *Food Grade formulas only*

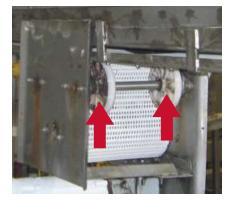
COMMON MATERIAL FAILURES				
METAL	PLASTIC	ELASTOMERS		
+ Galling + Corrosion + Surface Wear + Mechanical Failure	+ Mechanical Failures + Thermal Failures + Extreme heat = melts + Extreme cold - brittle & cracks + Chemical Failures + Solvents + Ozone + Environmental failures + UV + Heat + Pollution	 + Over compression + Chemical degradation + Swelling + Heat aging + Tears & crevices + Ozonolysis & Oxidation 		

^ https://www.elastoproxy.com/rubber-gaskets-fail/

< https://www.plasticexpert.com/learn/c900-pvc-pipe-failure/

4. Evaluate Design for Food Safety Hazards

Consider


- + Biological Opportunity for water build up & bacterial growth?
- + Chemical Does machine oil have opportunity to get into product stream?
- + **Physical** Metal on metal risk? Bolts used rather than welds?

Eliminate sources of hazards

- + Flat surfaces
- + Ledges
- + Niches
- + Hollows
- + Rough surfaces
- + Corrodible
- + Permeable

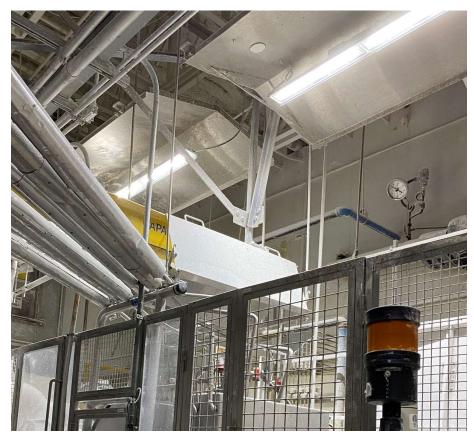
Biological Hazards

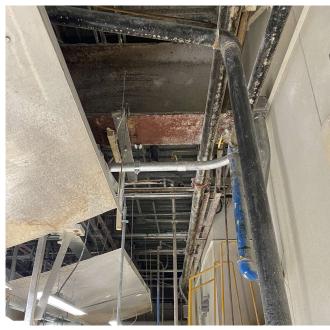
Physical Hazards

"Approved" Equipment & Products

DENNESSE 524

Examples


Is This Construction Suitable for High Care?

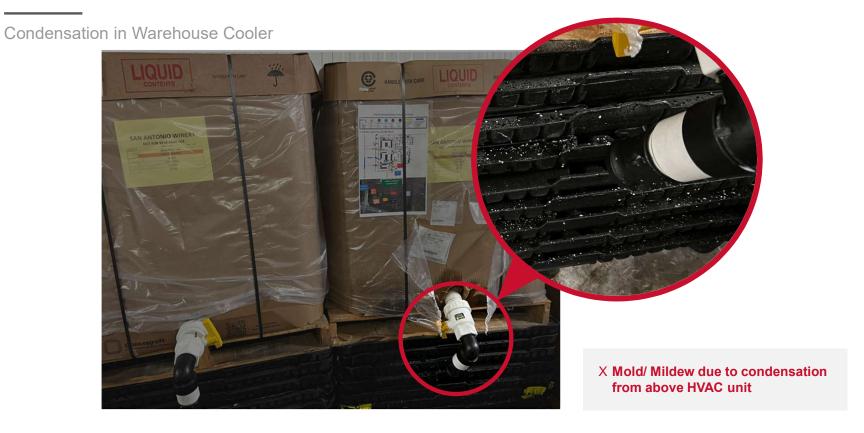


- ✓ Equipment in good condition
- ✓ Drop ceiling is in good condition
- X Peeling paint and corrosion
- X Floor coating is damaged
- X Drains in poor condition & clogging in some areas

Is This Construction Suitable for High Care?

- X Production environment has not been cleaned at an adequate frequency
- X Signs of condensation

Is This Construction Suitable for Medium Care?



- X Cockroach present in a raw processing area
- X Cheapest design installation options utilized*
 - X Struct support with channels and holes
 - X Plastic controls cabinet without a pitched top, discolored from sanitation chemicals
 - X Rust on the washer
- X Many painted elements within a washdown space

*The cheapest materials can be used if they are maintained.

Is This Construction Suitable for Standard Care?

Is this Suitable for the Exterior of a Food Plant?

Have you asked someone other than a FS&Q Manager about these GMPs?

- X Overgrown vegetation ants, rodent activity
- X Poor water drainage flooding into dry warehouse
- X Storing new equipment outside introduction of biological hazards, pest activity

Thank You!

Kara Scherer

Scherer@dennisgroup.com phone: +1 413.417.6439

