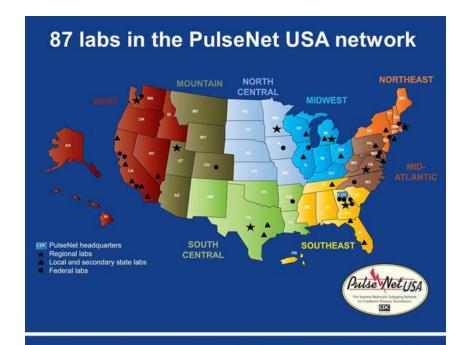


Foodborne Illness in the US


- "One of the safest food supplies in the world"...
- CDC estimates 1 in 6 Americans (48 million people) are sick annually with foodborne illness
 - √128,000 hospitalizations
 - √3,000 deaths
- ✓ Laboratory Confirmed Case Reports Annually in US
 - ✓ Campylobacter 43,696
 - √ Salmonella 41,930
 - ✓ *E. coli* O157 3,704
 - ✓ Shiga-toxin producing *E. coli* (STECs) 1,579
 - ✓ Listeria monocytogenes 808

Tracking Foodborne Pathogens

- Traditionally performed with by observation of biochemical reactions and often in combination with specific serotyping schema
 - Advantage: relatively low tech, low complexity
 - Disadvantage: expensive (materials and labor), requires growth of organism, slow to produce results
 - Example: Salmonella Typhimurium in milk from Hillfarm Dairy, IL
 16,284 cases from IL, IA, IN, MN, and WI
- Molecular subtyping brought methods that allowed visualization of genetic material or so-called "fingerprints"
 - Advantage: based on genetic information; more specific/discriminating; in some cases faster results; more widespread geographical recognition of "case clusters"
 - Disadvantage: in some cases less expensive (materials), requires growth of organism
 - Examples: Ribotyping, pulsed-field gel electrophoresis (PFGE), PCR RFLP; many different methods, multiple examples of application to outbreak investigations

PulseNet

- Network of public health labs
- Perform standardized protocols of PFGE on:
 - √ Salmonella
 - √ Campylobacter
 - ✓ E. coli O157 and other Shiga-toxin producing E. coli (STECs)
 - √ Listeria monocytogenes
 - √ Shigella
- Data uploaded with 4 days of receipt of isolate
- Additional data required for some organisms (e.g. serotyping for Salmonella)
- Each analyst is certified for gel and data analysis
- Data sharing is performed securely in a private network

The Pulsed-field Gel Electrophoresis Process

Bacterial Culture

Pulsed-field Gel Electrophoresis (PFGE)

Cut DNA with Restriction Enzyme

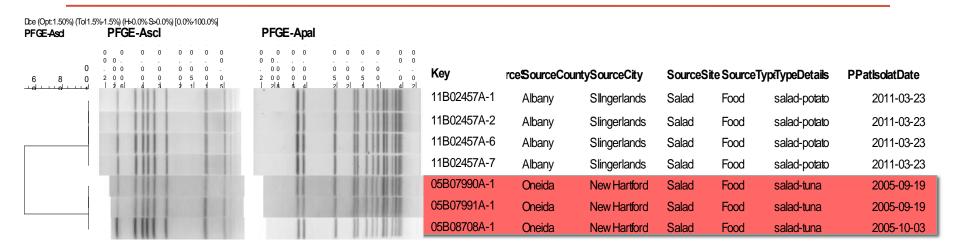
The scientist takes bacterial cells from an agar plate.

The bacterial cells are broken open with biochemicals, or lysed, so that the DNA is free in the agarose plugs.

The scientist loads the DNA gelatin plug into a gel, and places it in an electric field that separates DNA fragments according to their size.

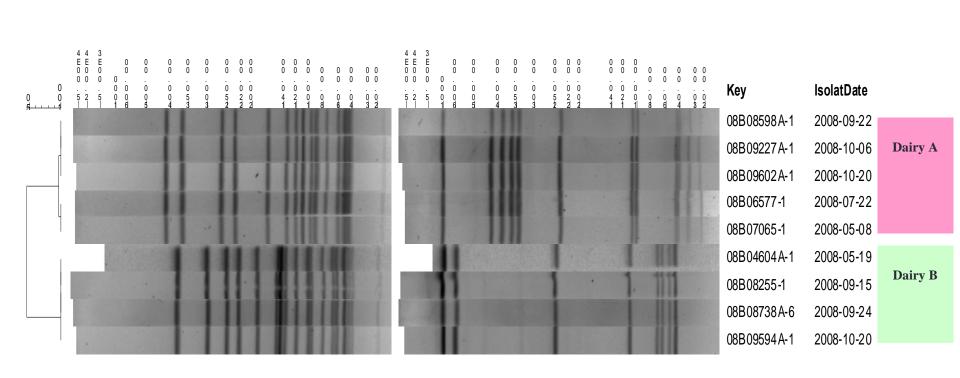
The scientist mixes bacterial cells with melted agarose and pours into a plug mold.

Data Analysis (BioNumerics)



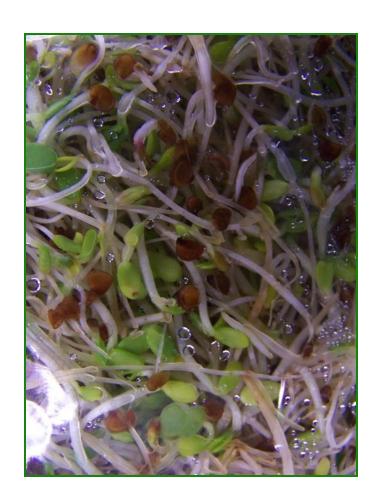
The gel is stained so that DNA can be seen under ultraviolet (UV) light.
A digital camera takes a photograph of the gel and stores the picture in the computer.

Comparison of PFGE patterns of Listeria monocytogenes isolated from salads produced by Food Processing Company A (2005-2011)


(7 entries)

Persistence of *Listeria monocytogenes* in farms producing raw bovine milk for sale

Dice (Opt:1.50%) (Tol 1.5%-1.5%) (H>0.0% S>0.0%) [0.0%-100.0%]


PFGE-Asc PFGE-Apal PFGE-Ascl

Listeria monocytogenes in Sprouts

March 2008-March 2009

- 20 cases of listeriosis
- Indistinguishable Ascl and Apal PFGE patterns
- CA (1), MA(6), NY(6); NJ(4);
 MD(1); ME(1); NH(1)
- <u>No common</u> source identified through initial epidemiologic investigation
- Source identified via routine random sampling of high risk foods (sprouts) by NYSDAM

Key SourceStateSourceSite SourceType CT__02033917 СТ Alfalfa Sprouts Food CT__02033918 СТ Alfalfa Sprouts Food CT__02033919 СТ Alfalfa Sprouts Food СТ CT 02033920 Alfalfa Sprouts Food CT___02033921 СТ Alfalfa Sprouts Food CT__02033931 СТ Factory swab Environmental CT___02033933 СТ Alfalfa Sprouts Food BLOOD MA___08P F0425 MA Human BLOOD (SUBCULTURE) MA___08PF1182 MA Human BLOOD MA 08PF1521 N.I Human MA___08PF1749 CA MA___08P F2122 NJ Human **PFGE Patterns of** MA 09P F0297 NJ Blood Human NH___2008027278 NH blood Human NY___BAC0800002720 NY Amniotic fluid Human NY BAC0900001363 NY Blood Human L. monocytogenes MA___08PF1952 MA Human FCF_507437-1 СТ Spent imagation water E nyironmenta FCF_507437-3 СТ Spent irriagation water Environmental FCF_507437-4 СТ Spent irriagation water Environmental isolates FCF 507437-7 СТ Spent imagation water Environmenta FCF_507438-1 СТ Alfalfa sprouts Food СТ FCF_507438-5 Alfalfa sprouts Food FCF 507439-1 СТ Alfalfa enmute Food associated with FCF_507439-7 СТ Alfalfa sprouts FCF__507442-106 СТ Environmental Swab Environmental FCF 507442-11 СТ Environmental Swab E nvironmental this sprout FCF_507442-16 СТ Environmental Swab Environmental FCF_507442-2 СТ Environmental Swab Environmental FCF 507442-21 СТ Environmental Swab E nvironmental FCF 507442-57 СТ Environmental Swab Environmental associated FCF 507442-68 СТ Environmental Swab FCF_507442-93 СТ Environmental Swab E nyironmental FCF_507443 СТ alfalfa/clover sprouts in I. Food FCF_507443-1b СТ alfalfa/clover sprouts in I. outbreak FCF_524837-1 СТ Spicy Sprout Blend Food FCF_524837-4 СТ Spicy Sprout Blend Food FCF 524838-3 СТ Clover Sprouts Food investigation FCF_524838-7 СТ Clover Sprouts FCF_524839-1 СТ B roccosprouts Food FCF 524839-2 СТ B roccosprouts Food FCF_524840-10 СТ BroccoSprout Blend Food FCF_524840-2 СТ BroccoSprout Blend Food СТ FCF 524844 Crunchy Sprout Blend Food MA___08PF1125 MA SPINAL FLUID MA___08PF1323 BLOOD Human MA___09P F0062 MA BLOOD Human MA___09P F0331 NJ Blood Human MA___09P F0345 MA Blood Human MD MDA 08223487 MD Human NY___BAC0900000221 NY Blood Human NYAG_09B02865A-1 NY Alfalfa Sprouts Food NYAG NOB 02866A-6 NY Clover Sprouts Food 1 183111 NYAG NYAG09B0232. СТ Alfalfa Sprouts Food NYC__nyc08-100647716 NY Human NYC__nyc09-100753729 NY Human NY___BAC0800004932 NY Blood Human

PFGE-Apa

Changes in Technology (1983-2014)

1983 First Cell Phone: Martin Cooper who invented the first "Cell" phone; weighed 2.5lbs and could only be used for 20min before the battery died.

Use: phone calls; not widely adopted until late 1990's/early 2000's

Apple iPhone 6: Up to 24hr of phone talk time; up to 16 days of standby time; weighs 4.55 oz; 128GB on board storage;

Use: Phone calls, texts, web browsing, fitness tracking, photo/videos, GPS tracking, books, music, movies, games, and the list keeps growing....

Why whole genome sequencing?

- PFGE: served a practical public health function; but data are qualitative and requires difficult to support IT structure
- Technology is advancing at an exponential pace
- Whole genome sequencing (WGS) reveals the complete DNA make-up of an organism, enabling us to better understand variations both within and between species.
- Public health labs are now using this technology to perform basic foodborne pathogen identification during foodborne illness outbreaks

Why whole genome sequencing? (cont)

- Whole genome sequencing performs the same function as PFGE but has the power to differentiate virtually all strains of foodborne pathogens, no matter what the species
- May be used to extrapolate other important information on the organism such as;
 - ✓ Serotype
 - √ Virulence gene profiles
 - ✓ Antibiotic resistance patterns
 - √ Other novel markers
- This technology can be applied to all microorganisms which makes it ideal for public health laboratories.

Basic Data Flow for Global WGS Public Access Databases

DATA ACQUISITION

Sequence and upload genomic and geographic data

Other distributed sequencing networks

DATA ASSEMBLY, ANALYSIS, AND STORAGE

International Nucleotide Sequence Database Collaboration (INSDC)
Shared Public Access Databases

- NCBI National Center for Biotechnology Information
- EMBL European Molecular Biology Laboratory
- DDBJ DNA Databank of Japan

PUBLIC HEALTH APPLICATION AND INTERPRETATION OF DATA

- Find clinical links
- · Identify clusters
- Conduct traceback
- Develop rapid methods
- Develop culture independent tests
- Develop new analytical software

Why do this at the State Level?

- Power in a distributed network of laboratories with a common capability; this model has worked well for PulseNet for the past 20 years
- State and local public health laboratory involvement was crucial to the success of the network
- Foodborne outbreak tracking still relies on coordination and collaboration between the laboratory, epidemiology, and environmental health
- Partnerships are key to the success of an <u>Integrated</u> <u>Food Safety System (IFSS)</u>

Environmental Health

New York State Rapid Response Team

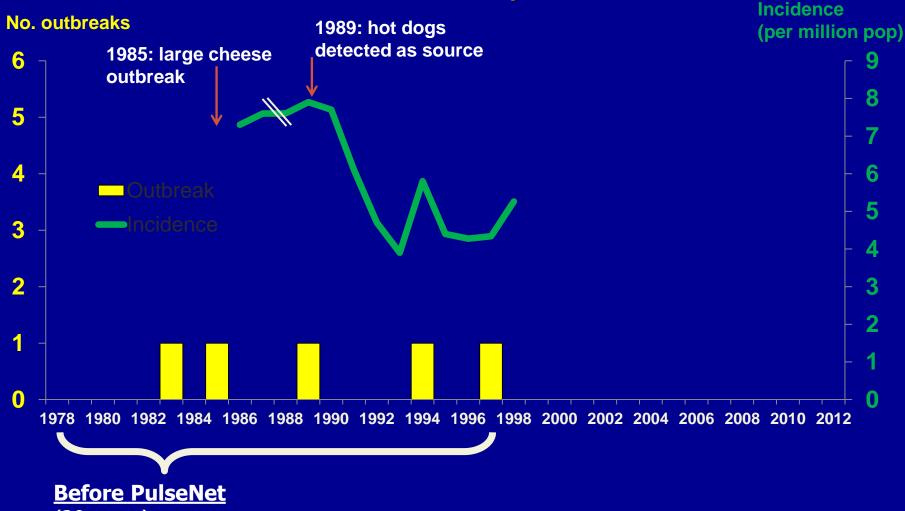

Laboratory

Epidemiology

Linking Food & Environmental Isolates to Human Disease (2008-2012)

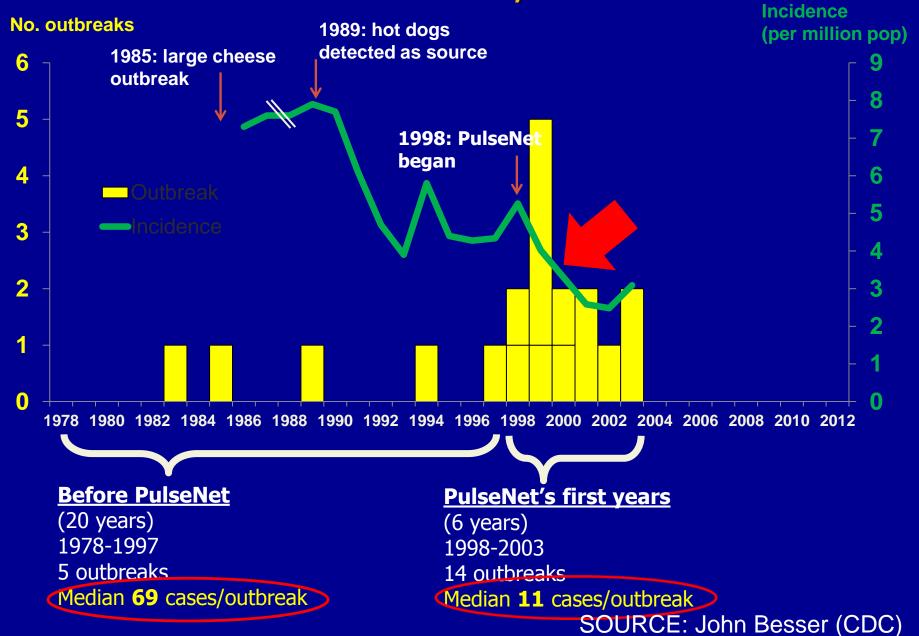
Pathogen	No. of Isolates	No. (%) Overlap with Human Cases*	No. (%) Associated with Cluster or Outbreak**
Campylobacter spp.	8	4 (50%)	2 (25%)
E. coli O157:H7	5	2 (4%)	0 (0%)
Non-O157 STECs	4	1 (25%)	0 (0%)
Listeria monocytogenes	56	44 (79%)	5 (9%)
Salmonella enterica	31	30 (97%)	6 (19%)

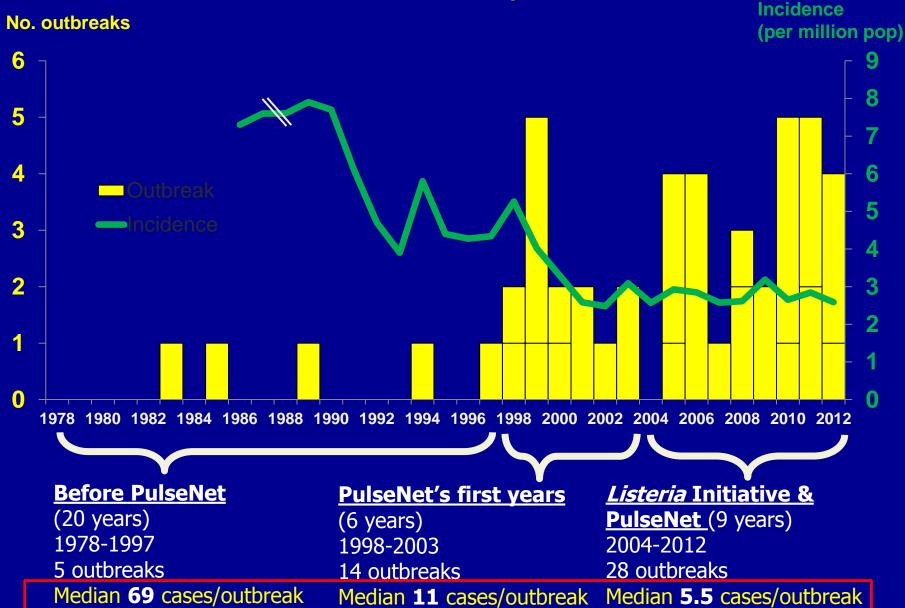
^{*=}PFGE pattern with at least one human case in PulseNet database


^{**=}Isolates assigned PulseNet outbreak code or linked to New York State only cluster

Historical Examples of Major Outbreak & Recall Investigations

- E. coli O157:H7 in fresh spinach (2006)
- E. coli O157:H7 in ground beef (2007)
- Salmonella associated with peanut butter (2007)
- Salmonella associated with "Veggie Booty" (2007)
- Salmonella associated with fresh produce (2008)
- Listeria monocytogenes associated with sprouts (2008-09)
- Listeria monocytogenes in a hospital cafeteria (2008)
- Salmonella associated with peanut butter (2009)
- Listeria monocytogenes in Spanish-style soft cheese (2009)
- Salmonella associated with deli meats/spices (2010)
- Shiga-toxin producing E. coli O145 in lettuce (2010)
- Listeria monocytogenes in potato salad (2011)
- Salmonella in chicken livers (2011)
- E. coli O157:H7 associated with produce (2013)
- Listeria monocytogenes in imported seafood (2012-13)
- Salmonella in pet foods/treats (2013)


Listeria Outbreaks and Incidence, 1978-1997


(20 years) 1978-1997 5 outbreaks Median **69** cases/outbreak

SOURCE: John Besser (CDC)

Listeria Outbreaks and Incidence, 1978-2003

Listeria Outbreaks and Incidence, 1978-2012

Listeria monocytogenes Project with Cornell University

- Phase 1 60 Large chains and 60 large/medium independents (27, 000ft²)
- Phase 2 60 Small independents (2, 200ft²)
- Phase 3 60 establishments with poor sanitation history (5, 500ft²) (3 consecutive – food equip./x contam.)

Retail Study Overall Summary

Environmental Samples	Phase 1	Phase 2	Phase 3
Stores Sampled	121	60	60
Store positive for Lm	73 (60%)	33 (55%)	39 (65%)
Multiple Positive sites	44 (36%)	19 (32%)	24 (40%)
Prevalent Ribotypes	27 (22%)	11 (18%)	16 (27%)
Multiple Prevalent Ribotypes	0	1 (2%)	5 (8%)

Retail Study Environmental Summary

Sponge Description	# Tested	# Present	% Present
Slicer/Utensils	131	6	4.6%
Deli Case	63	5	7.9%
Deli Sink	60	10	16.7%
Deli Floor Drain	11	3	27.3%
Deli Floor	13	1	7.7%
Dairy Case	53	8	15.1%
Raw Meat Floor Drain	15	10	66.7%
Dry Aisle	55	4	7.3%
Walk-in Cooler Floor	50	16	32%
Entrance floor mat	60	8	13.3%

Phase 2
3.6%
8.5%
11.7%
0%
14.3%
18.5%
61.5%
10%
27.1%
15.8%

Phase 1
2.6%
3.3%
12.2%
19.7%
10.9%
34.9%
7.3%

Summary

- NY State Department of Agriculture and Markets Food Laboratory is joining this network and will begin using this technology in the Summer of 2015
- Well characterized environmental (food, water, facility, etc.) isolates are critical to the success of GenomeTRACKR and PulseNet
- Whole genome sequencing technology is transforming public health microbiology in nearly real-time

Food Safety News

Breaking news for everyone's consumption

Home

Foodborne Illness Outbreaks

Food Recalls

Food Politics

Events

Subscribe

About I

How Culture-Independent Diagostics Threaten Public Health Surveillance

BY LYDIA ZURAW | NOVEMBER 12, 2014

Traditional methods for diagnosing foodborne illness infections such as Salmonella, Campylobacter and E. coli involve cultivating patient samples in an artificial nutrient medium. But tests that don't require isolates from pure culture are becoming increasingly popular.

There are different kinds of cultureindependent diagnostic tests (CIDTs), but they all take a broad look at the DNA in samples, screening for the general types of pathogens that are present. The type of CIDT public health folks think will really overtake

culture tests are syndrome-based panels that can test for multiple agents at once. There are five such tests currently licensed for gastrointestinal illnesses, with more expected to follow in coming years.

These CIDTs are particularly attractive to clinicians because, in addition to testing for many different pathogens, they can be faster than traditional methods and can detect bugs that would otherwise be difficult to find. They also don't need as much equipment or highly trained technicians, so they can save labs money.

http://FoodSafetyNews.com

November 12, 2014