Developments in Foodborne Disease Epidemiology: Update from the Centers for Disease Control and Prevention

125th Annual Educational Conference (virtual) Association of Food and Drug Officials

June 15, 2021

Robert Tauxe, MD, MPH, Director Division of Foodborne, Waterborne, and Environmental Diseases

Tremendous ongoing efforts during COVID-19 Pandemic

- Extraordinary efforts in many agencies, companies, universities, communities
- Today is day 527 of CDC COVID-19 Emergency Response
 - State and local health authorities working largely on pandemic response
 - Thousands of CDC staff also involved: ~ 1/3 of division at any given moment
 - Support local, state, tribal health departments to investigate focal outbreaks, promote prevention measures, testing, and vaccination efforts
 - Now our lab is ramping up sequencing of mRNA in specimens nationwide
- Website: COVID Data Tracker summarizes of up-to-date surveillance information
- COVID Data Tracker Weekly Review <u>subscribe</u> to this weekly summary

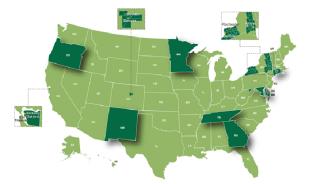
- COVID DATA TRACKER WEEKLY REVIEW

Foodborne illnesses in the United States

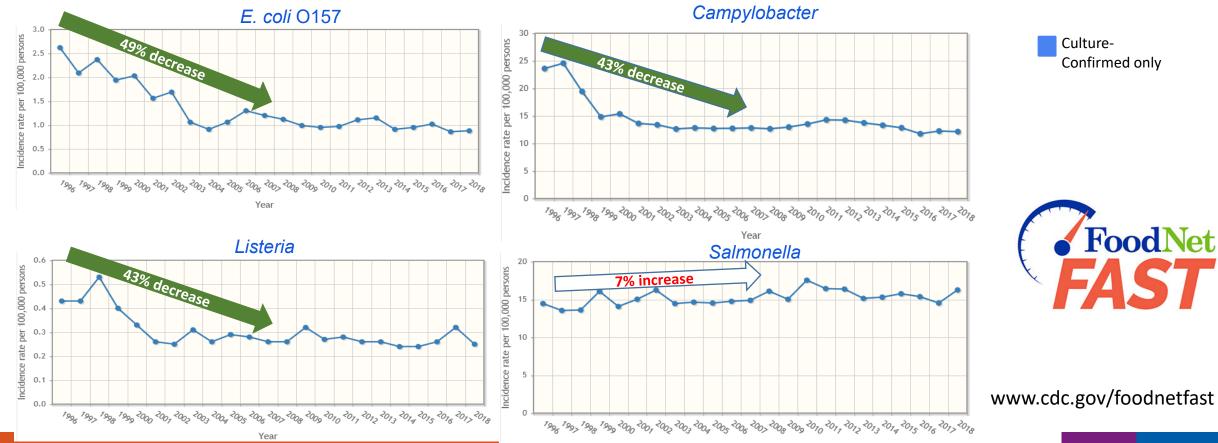
- Each year, 48 million people become sick, 128,000 are hospitalized, and 3,000 die
- Estimated annual cost of foodborne illness: \$15.6 billion
- Prevention: Understanding transmission well enough to prevent it
- Actions by regulators, public health, industry, consumers
- Progress driven by foodborne outbreaks and attribution studies, that lead to further research, changes in industry practices and regulatory policies
- 1996-2007: Important progress was made, especially with interventions at slaughter for meat and poultry, and along the supply chain for eggs
- Since then, less general progress has been made in reducing incidence
- Further efforts needed, including pre-harvest interventions

Food Safety Activities at CDC

- Conduct national surveillance for infections often transmitted by food
- Detect, investigate and control outbreaks to stop them and prevent future illness
- Drive illness prevention policy with data, analyses, and partnerships
- Innovate by applying advanced technologies to improve surveillance and to address diagnostic challenges
- Support state and local health departments, global and other partners to fulfill their primary roles in addressing the above goals


Surveillance and investigation are multi-agency efforts

Caregivers and clinical labs	 Make the diagnoses, and report the specific illnesses
Local and State health departments	 Receive reports of specific diseases, and interview patients Subtype pathogens in public health labs Investigate and control events within the state Lead many ongoing monitoring and prevention activities
CDC	 Primary national public health agency Conduct national disease surveillance and multistate outbreak detection and investigation
FDA (most foods) USDA/FSIS (meat, poultry, egg products)	 In outbreaks, trace suspected foods back to source Assess production and processing facilities Maintain ongoing prevention and monitoring efforts


The changing landscape of food

- The landscape is constantly changing
 - New foods
 - Changing food sources with globalized economy
 - Changing consumer habits, and demands
 - Emerging pathogens
 - COVID-19 pandemic
- The methods we use for surveillance are also changing
- The problems we find depend on the surveillance tools we use

Incidence of diagnosed cases, by pathogen — FoodNet

- Active surveillance, part of CDC's Emerging Infections Program
- Culture-confirmed illnesses per 100,000 population
- Collaboration among CDC, 10 FoodNet sites, FDA, USDA/FSIS
- 8 infections often spread through food
- Reliable and up-to-date data on illness trends online for 1996 2019

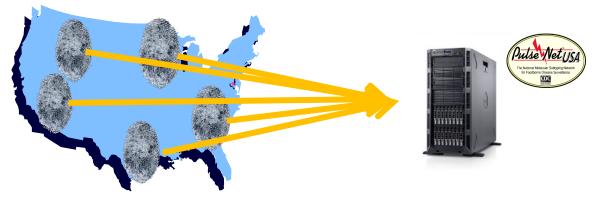
Food Safety Goals for 2030

- Healthy People 2030: From baseline in 2015-2017:
 - 20% reduction in Shiga-toxin producing *E. coli* infections
 - 25% reduction in *Salmonella* infections
 - 33% reduction in *Campylobacter* infections
 - 40% reduction in *Listeria monocytogenes* infections

Expanding efforts at CDC to meet Food Safety Goals

- Make surveillance and investigations more powerful
 - Implement whole genome sequencing for routine PulseNet subtyping
 - Detect and control outbreaks we may be missing now
 - Identify emerging problems
- Analyze our surveillance more to help target interventions
 - Attribute illnesses to specific food categories
 - Account for changing diagnostic tests that affect surveillance
- Stay on the cutting edge as new laboratory diagnostic methods arise.
 - The challenge of culture-independent diagnostic tests
 - Metagenomic tools for public health are coming
- Make our information and assessments rapidly available

PulseNet 1996-2021: National network for molecular, now sequence-based surveillance of bacterial enteric infections



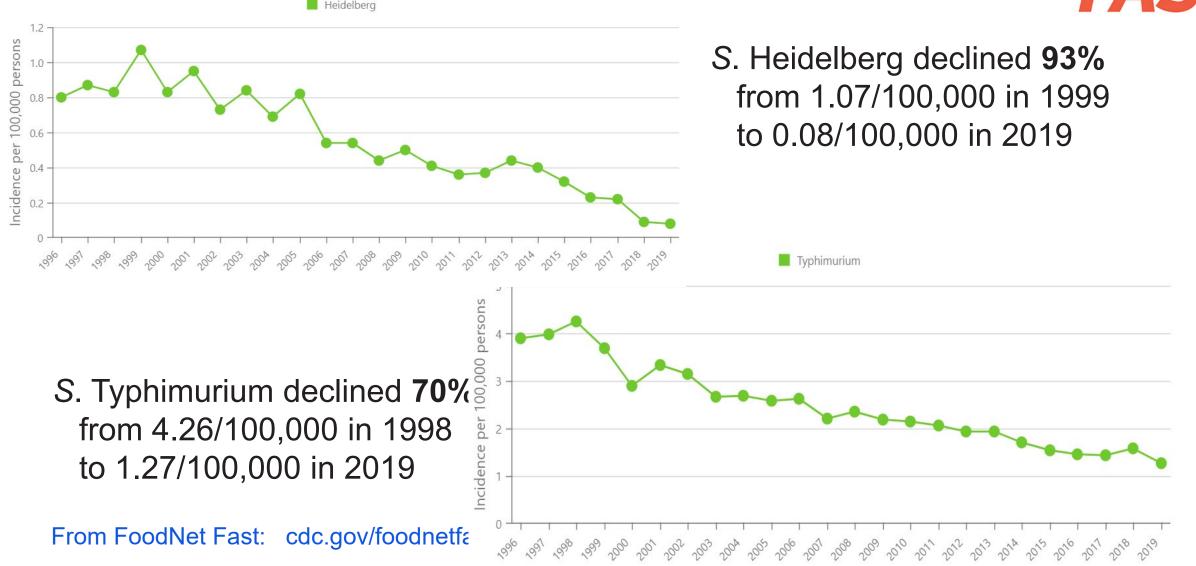
PulseNet connects the dots to detect foodborne outbreaks and prevent over 270,000 illnesses from

Salmonella, E. coli and Listeria every year.

- 87 labs participate:
 - State and city heath departments
 - FDA & USDA laboratories
- Since 2019, shifted to whole genome sequencing: 50,000 per year

- Public health labs test clinical isolates using standardized sequencing methods
- Data from pathogens are transmitted to a centralized database
- Monitor for clusters of illnesses with the same genetic "fingerprint"
- Investigate ~200 multistate clusters annually

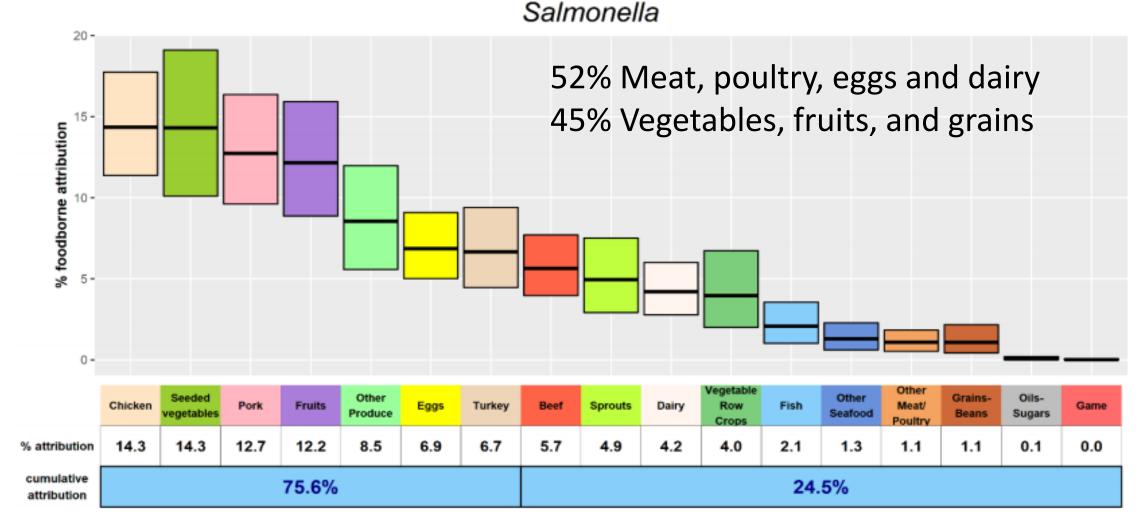
Continuous investment and improvement in public health laboratories


- Whole genome sequencing now routine in public health laboratories to
 - find and investigate dispersed outbreaks
 - improve source attribution of sporadic cases
 - track success of control measures
 - predict serotype and antimicrobial resistance from sequence
- Expanding IT infrastructure: access to greater computing power
- Clinical labs are adopting "culture-independent diagnostic tests"
- Public health labs still need to isolates for WGS
- Someone needs to culture the positive specimens This falls more and more on public health labs
- This summer: Piloting a new metagenomic approach to getting
 Salmonella sequences from fecal samples in two state public health labs

New landscape of bacterial foodborne outbreaks revealed by whole genome sequencing

- Finding more outbreaks, finding them while they are smaller
 - Identifying familiar and new sources
- Developing better source attribution models for sporadic cases of common serotypes
- Identifying events that fall between acute outbreaks and the background
 - **Re-occurring** (*E. coli* O157 in Romaine lettuce)
 - **Emerging** and spreading (*Salmonella* Infantis and poultry)
 - **Persisting** over several years (Resident strains of *Listeria*)
 - These are "REP strains" defined by WGS
- Using this information to guide upstream source investigations and target new prevention strategies, including vaccinating food animals

Two successes in *Salmonella* prevention for two formerly common serotypes, 1996-2019


Using attribution to help target interventions

- Interagency Food Safety Analytics Consortium (IFSAC): CDC, FDA, FSIS work together to summarize information on sources of foodborne infections
- Have constructed a model based on reported foodborne outbreaks over the last 18 years, giving more weight to most recent 5 years
- Attributed cases of illness across 17 major food categories, by pathogen
- Most recent summary based on 1998 2018
- Repeat and update annually

https://www.cdc.gov/foodsafety/ifsac/annual-reports.html

What are the food sources of salmonellosis? Attribution using food vehicles in outbreaks – U.S., 1998 - 2018

IFSAC 2018 Report www.cdc.gov/foodsafety/ifsac/annual-reports.html

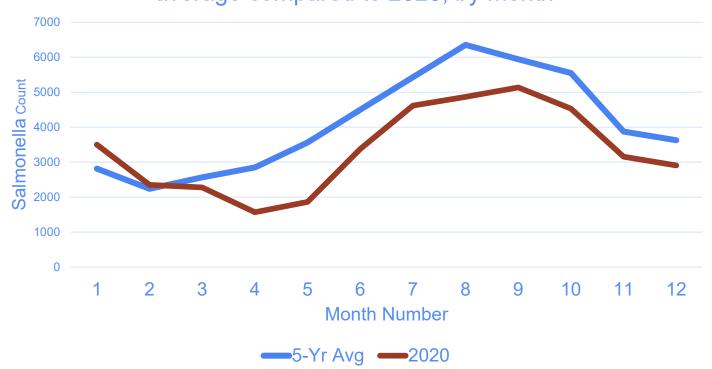
Summary of biggest targets for prevention

- FDA regulated foods
- Fresh produce: Salmonella and STEC*
 - Leafy greens and STEC*
 - Seeded vegetables and Salmonella
- Eggs: Salmonella
- Cheese and other RTE foods: Listeria
- Shellfish and Vibrio infections

- FSIS regulated foods
- Chicken: *Salmonella* and *Campylobacter*
- Ground beef: Salmonella and STEC*
- Pork: *Salmonella* and *Yersinia*

*Shiga toxin–producing *E. coli*, such as *E. coli* O157

Impacts of COVID-19 pandemic are wide-ranging


- Many changes in food sector, though no evidence of transmission via food
 - Pandemic impact on food production and processing workers
 - Control with regular testing, making distancing, other measures
 - Opportunity to vaccinate workforce; incentives needed
 - Restaurant closed, cancelled catering events
 - Groceries and meals delivered to homes, surge in home cooking
 - Now phased re-opening
- Public health efforts slowed
 - Local and state resources focused on COVID-19 response
 - Inspections complicated by COVID-19
 - Delayed CDC updates for FoodNet, National Outbreak Reporting System, National Antimicrobial Resistance Monitoring System
- Fewer reports of many types of illnesses

Impact of COVID-19 Pandemic of PulseNet Surveillance

- Early in March 2020: Sequence submissions dropped to 50% of expected
- Slowly recovered to 70-80% of expected
- Parallel to decreases in ER visits for any reason
- Did illnesses actually decrease in 2020?
- Major changes in food practices
- Major change in health care seeking
- Halt to international travel
- Still detected outbreaks

Human *Salmonella* Uploads to PulseNet, 5-yr average compared to 2020, by month

for Foodborne Disease Surveillan

12 major multistate foodborne outbreaks of 2020 – 2021

- *S.* Newport 1127 cases, 48 states
- *S.* Enteritidis 101 cases, 17 states
- *S.* Stanley 55 cases, 12 states
- *L. mono* 36 cases, 31 states
- L. mono 12 cases, 4 states
- *L. mono* 7 cases, 4 states
- STEC O103 51 cases, 4 states
- STEC O157 32 cases, 12 states
- STEC 0157 40 cases, 19 states
- STEC O157 18 cases, 9 states
- STEC O157 16 cases, 15 states
- *Cyclospora* 701 cases, 14 states

Red Onions (+515 in Canada) (+57 in Canada) Peaches Wood ear mushrooms (imported) Enoki mushrooms (imported) Deli meats Hispanic style cheeses **Clover sprouts** ? Source Leafy greens ? Source (retail romaine +) **Under Investigation Bagged salad mix**

12 major multistate enteric outbreaks of 2020 – 2021 Three were caused by REP strains

S. Newport	1127 cases, 48 states	Red Onions	(+515 in Canada)	
S. Enteritidis	101 cases, 17 states	Peaches	(+57 in Canada)	
S. Stanley	55 cases, 12 states	Wood ear mus	hrooms (imported)	
L. mono	36 cases, 31 states	Enoki mushrooms (imported)		
L. mono	12 cases, 4 states	Deli meats		
L. mono	7 cases, 4 states	Hispanic style cheeses		
STEC 0103	51 cases, 4 states	Clover sprouts	rel to 2019 outbreak	
STEC 0157	32 cases, 12 states	? Source	rel to 2018 CAZ clade	
STEC 0157	40 cases, 19 states	Leafy greens	SMS clade	
STEC 0157	18 cases, 9 states	? Source (retail romaine +)		
 STEC 0157 	16 cases, 15 states	Under Investigation		
 Cyclospora 	701 cases, 14 states	Bagged salad mix		

12 major multistate enteric outbreaks of 2020 – 2021 Four were from unusual or novel food sources

•	S. Newport	1127 cases, 48 states	Red C
•	<mark>S. Enteritidis</mark>	101 cases, 17 states	Peach
	S. Stanley	55 cases, 12 states	Wood
	L. mono	36 cases, 31 states	Enoki
•	L. mono	12 cases, 4 states	Deli n
•	L. mono	7 cases, 4 states	Hispa
•	STEC O103	51 cases, 4 states	Clove
•	STEC O157	32 cases, 12 states	? Sou
•	STEC 0157	40 cases, 19 states	Leafy
•	STEC O157	18 cases, 9 states	? Sou
•	STEC O157	16 cases, 15 states	Unde
•	Cyclospora	701 cases, 14 states	Bagge

Onions (+515 in Canada) (+57 in Canada) hes d ear mushrooms (imported) i mushrooms (imported) meats anic style cheeses er sprouts urce y greens urce (retail romaine +) er Investigation ed salad mix

Novel food contamination events need to be better understood so they can be controlled

- Imported mushrooms dehydrated or fresh, are sometimes not ready to eat
 - Often eaten uncooked in US, but routinely cooked in country of origin
 - Need for warning labels? Irradiation?
- Salmonella Newport and red onions
 - Extraordinary size of event
 - Traced back to four fields
 - Ultimate source of contamination undetermined
- Salmonella Enteritidis and fresh peaches
 - Did contamination occur while fruit still on trees?
 - Should we consider "Aeolian" transmission?
 - Proximity to upwind sources?

Aeolus God of the winds

Foodborne disease prevention in the 21st century: An evolving public health approach

- WGS is used in every state now, can be used for more pathogens
- Whole genome sequence-based surveillance is a major step forward:
 - More precise subtyping, plus enhanced patient interviews and traceback
 - More outbreaks and sources detected and controlled
 - Improved source attribution for sporadic cases
 - Systematic approach to repeating, emerging and persisting strains (REP Strains)
- A bridge to the future, when public health will have culture-independent tools that provide all needed information directly from a patient sample
- Define more targets for prevention, finding and correcting food safety gaps
- Empower public health, regulators, industry, and consumers to drive down incidence of foodborne infections

Thank you

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

