Fellowship in Food Protection

*Funding for this statement, publication, press release, etc. was made possible, in part, by the Food and Drug Administration through grant 5U18FD005964-03; views expressed in written materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

IFPTI Fellowship Cohort VII: Research Presentation

Justin McConaghy, M.S.

Oklahoma Weather Effects on *E. coli* in Surface Water and Produce Safety

Justin McConaghy, M.S. IFPTI 2018-2019 Fellow Oklahoma Dept. of Agriculture, Food, and Forestry

Contaminated irrigation water is a known cause of introducing pathogens onto fresh produce.

Romaine lettuce outbreaks in April 2018 from Arizona and November 2018 from California

Surface water is most susceptible for contamination.

- FSMA Produce Safety Rule attempts to reduce outbreaks by required water testing and statistical analysis.
- Water sources with generic Escherichia coli (E. coli) cfu higher than 126 GM or 410 STV require corrective measures.
- Corrective measures can be a water treatment system or waiting on a die-off prior to harvest.
- Highly debated part of the Produce Safety Rule.

Oklahoma Water Resources Board

Over 10,000 water tests in summer months between 2001 and 2015

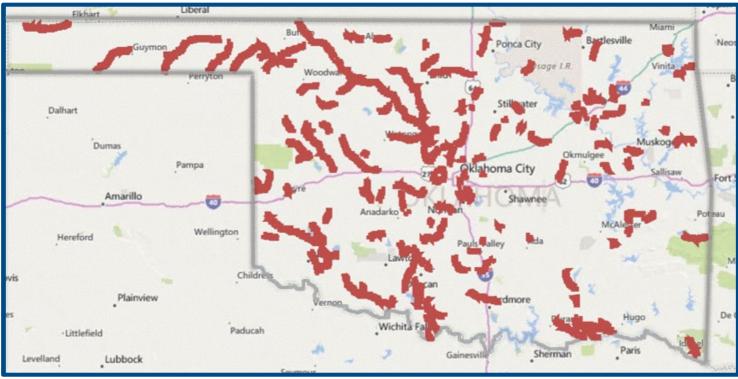
Tested for generic E. coli

Locations marked by GPS

Oklahoma Water Survey

25 test sites with 10 tests from each site

Randomly taken in summer months of 2018


Tested for generic *E*. coli and marked by GPS

- Section 303(d) of the Clean Water Act
 - States biannually create a 303(d) list of impaired bodies of water for the EPA
 - 154 bodies of water are designated impaired by E.
 coli in Oklahoma
 - Curiously, no lakes in Oklahoma are 303(d) listed for
 E. coli


303(d) E. Coli impaired water bodies

Source: https://gis.deq.ok.gov/maps/

Average Annual Rainfall

Source: OSU Factsheet E-993, "Oklahoma's Native Vegetation Types"

- Oklahoma Mesonet
 - Started in 1994
 - 120 stations across the state
 - Monitors air temperature, soil temperature, rainfall, wind, solar radiation, soil moisture, barometric pressure, etc.

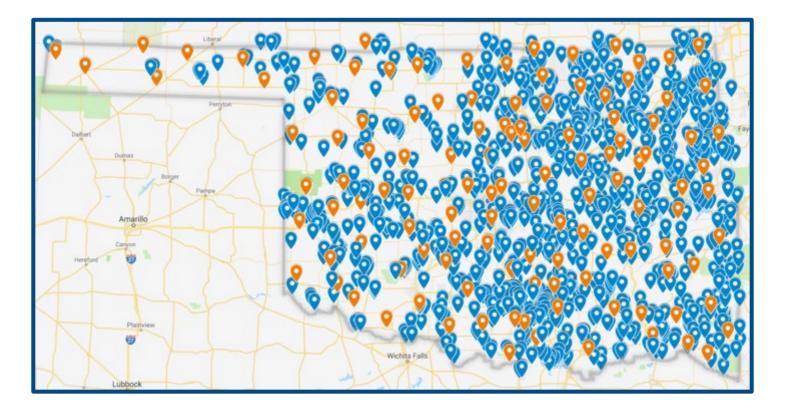


Image Source: www.mesonet.org

• Mesonet sites

Water test collection sites

The relationship between weather events and E. coli load in surface waters in Oklahoma is unknown at this time.

Research Questions

- 1. What is the relationship between weather data and the water testing data?
- 2. Can the relationships found between weather data and water data provide useful guidance for farmers?
- 3. Is the method used in this project applicable to other states?

Methodology

- Match water test data with the dates and locations of nearest Mesonet weather data.
- Perform Pearson Correlation to determine linear correlation between the *E. coli* cfu and each independent variable.
- Variables included:
 - East or West side of the state
 - Stream or Lake
 - 17 daily weather data variables

Methodology

Daily weather variables:

Maximum Air	Minimum Air	Average Air			
Temperature	Temperature	Temperature			
Maximum Wind	Minimum Wind	Average Wind			
Speed	Speed	Speed			
Maximum	Minimum	Average			
Barometric Pressure	Barometric Pressure	Barometric Pressure			
Total Solar Radiation	Inches of Rainfall	Maximum 5 minute rainfall rate			
Soil Temperature 5 cm under sod	Dew Point	Average Humidity			
Change in Barometric Pressure	Days since a Rain greater than 0.20 inches				

Methodology

Statistical significance was based on a P-value of 0.05 or less

• The lower the P-value, the more likely to have a false correlation

Strong correlation coefficients are numbers closer to +/-1

- Positive correlation means an increase in that variable results in an increase in *E. coli*
- Negative correlation means an increase in that variable results in a decrease in *E. coli*

Study Population

- Surface water data from the Oklahoma Water Resources Board on lakes and streams all over the state from 2001-2015
- Surface water data from the Oklahoma Water Survey in 2018
- All water samples were taken in the months of May through October
- Used only water data with 100 cfu or greater of *E. coli*, resulting in 2,036 samples

Statewide Analysis

- Showed significance (p<.05) in Maximum Wind Speed, Maximum, Minimum, and Average Barometric Pressure, Total Solar Radiation, Rainfall, and Maximum 5 minute rainfall rate
- All had very low correlations
- Highest correlation was rainfall with a positive correlation of 0.1355 and p<0.0001

• East and West Analysis

- More arid western half of the state had no significant variables
- Eastern half of the state had many significant variables
 - Only Minimum Wind Speed, all Barometric Pressure measurements, and Dew Point not significant
- Highest correlation in the East was in Rainfall (0.24366), Solar Radiation (-0.14666), and Maximum 5 minute rainfall rate (0.14579) all with p<0.0001

Stream and Lake Analysis

- Streams had several significant but very low correlations (under 0.1)
- Rainfall was highest correlated variable (0.16479) in the streams
- Lakes had Change in Barometric Pressure (0.17128) and Average Humidity (-0.19623) as the only significant variables
- A greater change in barometric pressure could signify a storm occurring, increasing the wake.

Individual Site Analysis

- 24 individual sites with 20 or more samples were analyzed individually
- Six sites had no significant correlations
- Remaining sites had some highly correlated coefficients (±0.4 to ±0.9), but the significant variables differed by each site
- Rainfall and Maximum 5 minute rainfall rate were the most common significant variables with 7 sites all positively correlated

Conclusions

- Statewide recommendation on monitoring certain weather factors is not advisable.
- A farm could monitor individual sites to determine what weather factors affect their individual water supplies.
- The differences between East and West show that using weather as a guidance may be more feasible in Eastern states.
- Rainfall was the most common and highest correlated weather variable throughout the study.

Recommendations

- 1. Farmers could keep weather records to determine if their water sources are affected by the weather.
- 2. Further research should be conducted on how weather may affect small ponds and irrigation canals.
- 3. Further research should also be conducted to determine why Oklahoma's man-made lakes are not impaired by *E. coli*.

Acknowledgements

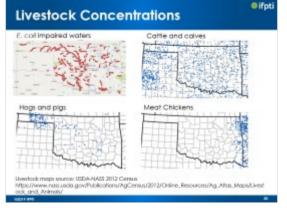
- Oklahoma Water Resources Board
- Oklahoma Mesonet
- Oklahoma Water Survey
- Dr. James Enderby Bidlack, Professor of Biology at the University of Central Oklahoma
- Bryan Buchwald, Oklahoma Department of Agriculture, Food, and Forestry
- IFPTI Fellowship staff and mentors

Questions?

Justin McConaghy, M.S. justin.mcconaghy@ag.ok.gov

©2019 IFPTI

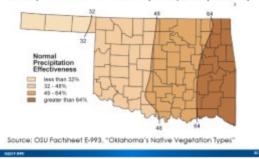
Supporting Information Table of Contents

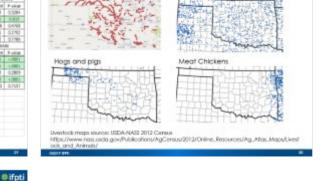

ifpti

ifpti

Individual Correlation Examples

Correlation Coefficients									
	Beaver River 1	Beaver River 3	Big Cabin Creek	Black Bear Creek	Blue River	Brushy Creek			
MAXTEMP	0.07898	0.23421	-0.40185	0.07726	-0.5154	-0.1827			
MINTEMP	0.12809	0.11893	-0.18706	-0.40126	-0.36166	-0.2109			
AVIGTOMP	0.14201	0.21905	0.28718	0.16492	-0.49306	0.4253			
WINDMAX	-0.30798	-0.49333	0.63285	-0.12503	0.26888	0.6313			
WINDMIN	-0.21062	-0.05984	0.01484	-0.16086	-0.23813	-0.0234			
WINDAWG	-0.30882	-0.31799	0.20075	-0.24307	0.09714	0.07			
PRESSMAX	-0.07099	0.55765	0.00524	0.28663	0.29036	0.0250			
PRESSMIN	-0.03915	0.58449	-0.1785	0.35424	0.20344	0.0227			
PRESSAVIG	0.06332	0.58888	0.01788	0.31725	0.25708	0.0479			
PRESSCHG	-0.15589	-0.32207	0.57492	-0.19444	0.16519	0.0074			
10130L	0.21749	0.15822	-0.48977	-0.09903	-0.22408	-0.5547			
RAIN	-0.05408	-0.30174	0.92785	-0.2114	0.6644	0.7818			
MAXENE	-0.04911	-0.11575	0.89297	-0.15344	0.64609	0.6030			
SOUTEMP	0.09289	0.27508	-0.17761	-0.23737	-0.32012	0.3358			
DEWPNT	0,32938	-0.25293	0.00295	-0.36848	0.05933	0.0293			
HUMANG	0.11595	-0.30705	0.42327	-0.79074	0.46404	0.4001			
RAINDEL	-0.11614	-0.0077	-0.38777	0.74258	-0.15421	-0.4267			




Other Research

- Research by Whitman and Nevers (2008) at the recreational beaches of Lake Michiaan has shown:
 - E. coli count fluctuations were simultaneous in time at neighboring beaches
 - E. coli concentrations are more closely correlated for beaches that are more closely located
 - Julian day, wave height, and barometric pressure explained up to 40% of the variation in E. coli concentration

Vegetation and Precipitation

Precipitation Effectiveness (Precip/Evap in 24h)

%ifpti

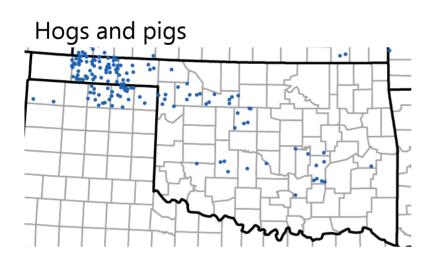
Individual Correlation Examples

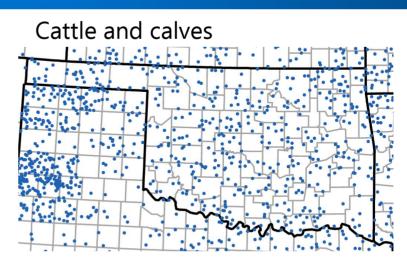
Correlation Coefficients									
	Beaver River 1 Beaver River 3		Big Cabin Creek	Black Bear Creek	Blue River	Brushy Creek			
MAXTEMP	0.07898	0.23421	-0.40185	0.07726	-0.5154	-0.18276			
MINTEMP	0.12809	0.11893	-0.18706	-0.40126	-0.36166	-0.21098			
AVGTEMP	0.14201	0.21905	-0.28718	-0.16492	-0.49306	-0.42534			
WINDMAX	-0.30798	-0.49331	0.63286	-0.32503	0.26888	0.63136			
WINDMIN	-0.21062	-0.05984	0.01484	-0.16086	-0.23813	-0.02347			
WINDAVG	-0.30882	-0.31799	0.20075	-0.24307	0.03714	0.076			
PRESSMAX	-0.07699	0.55765	0.06524	0.28663	0.29036	0.02503			
PRESSMIN	-0.03915	0.58449	-0.1785	0.35424	0.20344	0.02276			
PRESSAVG	-0.06332	0.58888	-0.01788	0.31725	0.25708	0.04798			
PRESSCHG	-0.15589	-0.32207	0.57492	-0.19444	0.16519	0.00749			
TOTSOL	0.21749	0.15822	-0.48977	-0.09903	-0.22408	-0.55477			
RAIN	-0.05408	-0.30174	0.92785	-0.2114	0.6644	0.78182			
MAXFIVE	-0.04911	-0.31575	0.89297	-0.15344	0.64609	0.60301			
SODTEMP	0.09289	0.27508	-0.17761	-0.23737	-0.22012	0.33586			
DEWPNT	0.32938	-0.25293	0.00295	-0.36848	0.05933	0.02933			
HUMAVG	0.11596	-0.30705	0.42327	-0.39074	0.46401	0.40011			
RAINDEL	-0.11614	-0.0077	-0.38777	0.74218	-0.35421	-0.42677			

Green highlight indicates statistically significant (p<0.05)

Overall Coefficients and P-values

	MAXTEMP		MAXTEMP MINTEMP		AVGTEMP		WINDMAX		WINDMIN		WINDAVG	
	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value
Overall	-0.03586	0.1065	-0.02163	0.3305	-0.03941	0.0761	0.06641	0.0027	-0.01809	0.4148	0.02168	0.3284
East	-0.1247	0.0001	-0.07794	0.0157	-0.12135	0.0002	0.10942	0.0007	0.02773	0.3893	0.07985	0.013
West	0.01616	0.598	0.01939	0.5269	0.01222	0.6902	0.03948	0.1971	-0.0507	0.0976	-0.02178	0.4768
Stream	-0.05365	0.0204	-0.0249	0.2821	-0.05292	0.0222	0.07021	0.0024	-0.01587	0.4923	0.02501	0.2792
Lake	0.12523	0.1158	0.00156	0.9845	0.09603	0.2286	0.025	0.7529	0.03946	0.6192	0.02232	0.7786
	PRESSMAX		PRESS	SMIN	PRESSAVG		PRESSCHG		TOTSOL		RAIN	
	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value
Overall	-0.04908	0.0271	-0.05021	0.0237	-0.04871	0.0283	0.01514	0.4949	-0.04987	0.0282	0.13555	<.0001
East	-0.03737	0.2474	-0.04915	0.1281	-0.0396	0.2202	0.06105	0.0579	-0.14666	<.0001	0.24366	<.0001
West	-0.05912	0.0534	-0.05696	0.0628	-0.05772	0.0594	-0.01894	0.5362	0.02669	0.3961	0.03268	0.2869
Stream	-0.04857	0.0359	-0.04984	0.0313	-0.04827	0.037	0.01669	0.4702	-0.06319	0.0077	0.16479	<.0001
Lake	0.10386	0.1898	0.06856	0.3875	0.08848	0.2643	0.17128	0.0298	0.15634	0.0513	-0.02913	0.7137
	MAXFIVE SODTEMP		DEWPNT		HUMAVG		RAINDEL					
	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value		
Overall	0.07591	0.0006	-0.01278	0.5855	-0.03571	0.109	0.02219	0.3186	-0.02953	0.183		
East	0.14579	<.0001	-0.12698	0.0002	-0.04533	0.1614	0.11245	0.0005	-0.10204	0.0015		
West	0.02182	0.477	0.04366	0.1761	-0.02496	0.4171	-0.01965	0.5225	0.00026	0.9932		
Stream	0.08829	0.0001	-0.0249	0.3065	-0.03551	0.1259	0.03686	0.1116	-0.03909	0.0907		
Lake	0.00422	0.9577	0.16701	0.0538	-0.0686	0.3948	-0.19623	0.0135	0.12533	0.1132		


Green highlight indicates statistically significant (p<0.05)

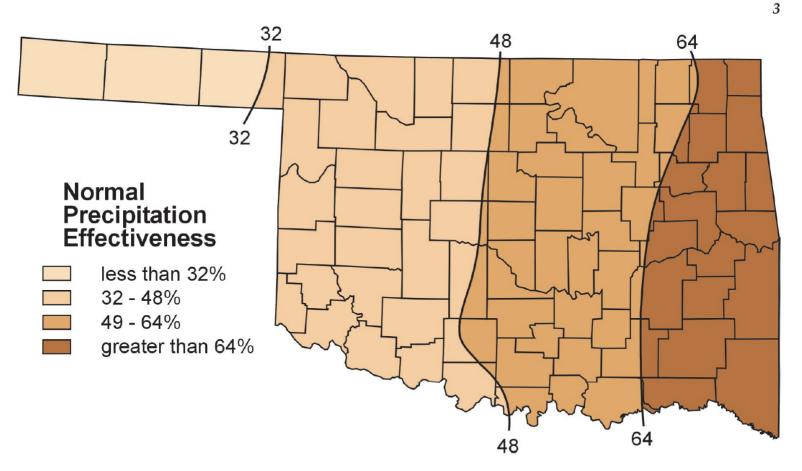


Livestock Concentrations

E. coli impaired waters

Livestock maps source: USDA-NASS 2012 Census https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Ag_Atlas_Maps/Livest ock_and_Animals/

©2019 IFPTI


Other Research

- Research by Whitman and Nevers (2008) at the recreational beaches of Lake Michigan has shown:
 - E. coli count fluctuations were simultaneous in time at neighboring beaches
 - E. coli concentrations are more closely correlated for beaches that are more closely located
 - Julian day, wave height, and barometric pressure explained up to 40% of the variation in *E. coli* concentration

Vegetation and Precipitation

Precipitation Effectiveness (Precip/Evap in 24h)

Source: OSU Factsheet E-993, "Oklahoma's Native Vegetation Types"